Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.11.22.469599

ABSTRACT

ABSTRACT Metagenomic DNA sequencing is a powerful tool to characterize microbial communities but is sensitive to environmental DNA contamination, in particular when applied to samples with low microbial biomass. Here, we present contamination-free metagenomic DNA sequencing (Coffee-seq), a metagenomic sequencing assay that is robust against environmental contamination. The core idea of Coffee-seq is to tag the DNA in the sample prior to DNA isolation and library preparation with a label that can be recorded by DNA sequencing. Any contaminating DNA that is introduced in the sample after tagging can then be bioinformatically identified and removed. We applied Coffee-seq to screen for infections from microorganisms with low burden in blood and urine, to identify COVID-19 co-infection, to characterize the urinary microbiome, and to identify microbial DNA signatures of inflammatory bowel disease in blood.


Subject(s)
COVID-19 , Inflammatory Bowel Diseases
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.05.21263141

ABSTRACT

Deep understanding of the SARS-CoV-2 effects on host molecular pathways is paramount for the discovery of early biomarkers of outcome of coronavirus disease 2019 (COVID-19) and the identification of novel therapeutic targets. In that light, we generated metabolomic data from COVID-19 patient blood using high-throughput targeted nuclear magnetic resonance (NMR) spectroscopy and high-dimensional flow cytometry. We find considerable changes in serum metabolome composition of COVID-19 patients associated with disease severity, and response to tocilizumab treatment. We built a clinically annotated, biologically-interpretable space for precise time-resolved disease monitoring and characterize the temporal dynamics of metabolomic change along the clinical course of COVID-19 patients and in response to therapy. Finally, we leverage joint immuno-metabolic measurements to provide a novel approach for patient stratification and early prediction of severe disease. Our results show that high-dimensional metabolomic and joint immune-metabolic readouts provide rich information content for elucidation of the hosts response to infection and empower discovery of novel metabolic-driven therapies, as well as precise and efficient clinical action.


Subject(s)
COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-668116.v1

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 (ΔNS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of ΔNS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a ΔNS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that ΔNS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on ΔNS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Subject(s)
Influenza, Human
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.28.441797

ABSTRACT

The influenza A non-structural protein 1 (NS1) is known for its ability to hinder the synthesis of type I interferon (IFN) during viral infection. Influenza viruses lacking NS1 ({Delta}NS1) are under clinical development as live attenuated human influenza virus vaccines and induce potent influenza virus-specific humoral and cellular adaptive immune responses. Attenuation of {Delta}NS1 influenza viruses is due to their high IFN inducing properties, that limit their replication in vivo. This study demonstrates that pre-treatment with a {Delta}NS1 virus results in an immediate antiviral state which prevents subsequent replication of homologous and heterologous viruses, preventing disease from virus respiratory pathogens, including SARS-CoV-2. Our studies suggest that {Delta}NS1 influenza viruses could be used for the prophylaxis of influenza, SARS-CoV-2 and other human respiratory viral infections, and that an influenza virus vaccine based on {Delta}NS1 live attenuated viruses would confer broad protection against influenza virus infection from the moment of administration, first by non-specific innate immune induction, followed by specific adaptive immunity.


Subject(s)
Respiratory Tract Infections , Virus Diseases
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.06.21254728

ABSTRACT

IMPORTANCE: As the United States continues to accumulate COVID-19 cases and deaths, and disparities persist, defining the impact of risk factors for poor outcomes across patient groups is imperative. OBJECTIVE: Our objective is to use real-world healthcare data to quantify the impact of demographic, clinical, and social determinants of health associated with severe COVID-19 outcomes. We sought to identify high-risk scenarios and characterize dynamics of risk among racial and ethnic groups. DESIGN: A retrospective cohort of COVID-19 patients diagnosed between March 1 and August 20, 2020. Fully adjusted logistical regression models for hospitalization, severe disease and mortality outcomes across 1-the entire cohort and 2- nested within self-reported race/ethnicity groups. SETTING: Three NewYork-Presbyterian health care system that draw patients across all five boroughs of New York City. Data was obtained through automated abstraction of real-world data from electronic medical records. PARTICIPANTS: During the study timeframe, 110,498 individuals were tested for SARS-CoV-2 in the NewYork-Presbyterian health care system; 11,930 patients were confirmed for COVID-19 by RT-PCR or covid-19 clinical diagnosis. MAIN OUTCOMES AND MEASURES: The primary predictor of interest was patient race/ethnicity, and study covariates included demographics, clinical comorbidity, and zip code-based neighborhood socio-economic status. The primary outcomes of interest were COVID-19 hospitalization, severe disease, and death. RESULTS: Of the patients who tested positive for COVID-19, 4,895 were hospitalized; of those, 1,070 developed severe disease. 1,654 patients suffered COVID-19 related death. Certain risk factors only showed an impact in specific race groups and varied among outcome models. Clinical factors were more significant than demographic or social determinants. In our all-patients models, hypertension conveyed the highest risk of hospitalization (OR=1.89, 89p=1.26x10 -1020), while Type 2 Diabetes was significantly associated with all three outcomes (hospitalization: OR=1.4848, p=1.39x10-04394; severe disease: OR=1.466, p=44.47x10-099; mortality: OR=1.27, p=0.001). In race-nested models, COPD increased risk of hospitalization only in Non-Hispanic (NH)-White patients (OR=2.707, p=0.009). Obesity (BMI 30+) was associated with severe disease among hospitalized NH-White (OR=1.48, p=0.038) and NH-Black (OR=1.77, p=0.025). Cancer was the only significant mortality risk factor in Hispanic patients (OR=1.9797, p=0.04343), and heart failure was associated with mortality only in NH-Asian patients (OR=2.62, p=0.001). CONCLUSIONS AND RELEVANCE. We found that clinical comorbidity, more than social determinants, was associated with COVID-19 outcomes, suggesting clinical factors are more predictive of risk than social factors.


Subject(s)
Heart Failure , Diabetes Mellitus, Type 2 , Neoplasms , Hypertension , Death , COVID-19
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.08.434433

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) virus has infected over 115 million people and caused over 2.5 million deaths worldwide. Yet, the molecular mechanisms underlying the clinical manifestations of COVID-19, as well as what distinguishes them from common seasonal influenza virus and other lung injury states such as Acute Respiratory Distress Syndrome (ARDS), remains poorly understood. To address these challenges, we combined transcriptional profiling of 646 clinical nasopharyngeal swabs and 39 patient autopsy tissues, matched with spatial protein and expression profiling (GeoMx) across 357 tissue sections. These results define both body-wide and tissue-specific (heart, liver, lung, kidney, and lymph nodes) damage wrought by the SARS-CoV-2 infection, evident as a function of varying viral load (high vs. low) during the course of infection and specific, transcriptional dysregulation in splicing isoforms, T cell receptor expression, and cellular expression states. In particular, cardiac and lung tissues revealed the largest degree of splicing isoform switching and cell expression state loss. Overall, these findings reveal a systemic disruption of cellular and transcriptional pathways from COVID-19 across all tissues, which can inform subsequent studies to combat the mortality of COVID-19, as well to better understand the molecular dynamics of lethal SARS-CoV-2 infection and other viruses.


Subject(s)
Lung Diseases , Respiratory Distress Syndrome , Severe Acute Respiratory Syndrome , Chronobiology Disorders , COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.08.20189092

ABSTRACT

With a rising incidence of COVID-19-associated morbidity and mortality worldwide, it is critical to elucidate the innate and adaptive immune responses that drive disease severity. We performed longitudinal immune profiling of peripheral blood mononuclear cells from 45 patients and healthy donors. We observed a dynamic immune landscape of innate and adaptive immune cells in disease progression and absolute changes of lymphocyte and myeloid cells in severe versus mild cases or healthy controls. Intubation and death were coupled with selected natural killer cell KIR receptor usage and IgM+ B cells and associated with profound CD4 and CD8 T cell exhaustion. Pseudo-temporal reconstruction of the hierarchy of disease progression revealed dynamic time changes in the global population recapitulating individual patients and the development of an eight-marker classifier of disease severity. Estimating the effect of clinical progression on the immune response and early assessment of disease progression risks may allow implementation of tailored therapies.


Subject(s)
Death , COVID-19
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.20.048066

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL